Improve Lubrication Practices with Ultrasound
UE Systems Europe B.V.

Improve Lubrication Practices with Ultrasound

Keeping a handle on lubrication is easy, right? All one needs to do is make sure the right lubricant is used in the right amount and at the right time. Not so fast; if only it were that simple

Share:

Facebook
Twitter
LinkedIn
WhatsApp

It has been estimated that 60-90% of all bearing failures are lubrication related. Bearing failures most often lead to unplanned downtime which can impact production as well as affect all related components around the bearing. Downtime is costly. Since the most common cause of bearing failure is lubrication related, it’s clear to see that lubrication is serious business. And for the longest time, that “serious business” has been conducted in a way that on its face makes perfect sense – but in fact borders on haphazard.

Time-based lubrication leads to over-lubrication

Many technicians, unfortunately, have relied on “preventive”, time-based lubrication alone. That is, every X number of months, the grease gun comes out, and the bearings are lubricated. But by relying solely on time-based lubrication, or even a combination of planned maintenance and temperature readings to serve as a proxy for lubrication status, one runs the risk of something just as bad, if not worse: over-lubrication. In fact over-lubrication has been reported both anecdotally and in presentations at various conferences to be the primary cause of premature bearing failure.

Relying on time-based, periodic lubrication assumes bearings need to be greased at defined time periods. Often this evolves into a well-intentioned guessing game at best. Adding more lubrication to a bearing that is already adequately greased is a real risk.

How ultrasound improves lubrication practices

Ultrasonic equipment detects airborne and structure borne ultrasounds normally inaudible to the human ear and electronically “transposes” them into audible signals that a tech can hear through headphones and view on a display panel as decibel (dB) levels. With this information, a trained technician can interpret the bearing condition in order to determine what, if any, corrective action is needed.